Our galaxy may be evaporating as dead stars leave the Milky Way

(ORDO NEWS) — Everything dies in the end, even the brightest stars. In fact, the brightest stars live the shortest lives.

They consume all the hydrogen they have over a few million years and then explode into brilliant supernovae.

The remains of their core collapse into a neutron star or black hole. These little dark objects dot our galaxy like a cosmic graveyard.

Both neutron stars and stellar black holes are difficult to detect.

Neutron stars are only about fifteen kilometers in diameter, and unless their magnetic poles are aligned so that we perceive them as pulsars, they are usually overlooked.

Our galaxy may be evaporating as dead stars leave the Milky Way 2
The size of a neutron star and a stellar mass black hole

Stellar black holes are even smaller and do not emit their own light. Some appear as microquasars when they consume the mass of a companion star, but most can only be seen when they pass between us and a more distant star, so they can be detected using microlensing.

We didn’t. enough of these stellar remnants have been observed to create an observable map of their general location, but a recent study published in the Monthly Notices of the Royal Astronomical Society has modeled where we might find them.

They looked at the distribution of stars in our current galaxy and modeled how stellar remnants can be pulled and deflected by stellar interactions.

Since these “cemetery stars” are usually older than the current stars in the galaxy, they have had more time to move on to new orbital paths.

Our galaxy may be evaporating as dead stars leave the Milky Way 1
Distribution of stellar remnants in the Milky Way

As you might expect, stellar remnants statistically experience some kind of blurring effect in their positions. The distribution of these stars occurs in a plane three times thicker than that of the visible Milky Way. But the team discovered one highly unexpected aspect of their distribution.

About a third of these old dead stars are ejected from the galaxy. In their model, a third of the stars experienced a close stellar collision that gave them such a speed boost that they eventually escaped the Milky Way’s gravitational pull.

In other words, ghosts leave the planet. cemetery.

This means that over time the Milky Way “evaporates” or loses mass, which is unexpected. We know that small clusters of stars, such as globular clusters, can evaporate, but the Milky Way is much more massive, so you might think that long-term evaporation would be minimal.

Another amazing aspect of the model. , is that these stellar remnants are fairly evenly distributed throughout the Milky Way. Most stars should have a stellar remnant within a hundred light years of them.

For the Sun, the most likely distance to the nearest stellar remnant is about 65 light-years. So we can have a heavenly ghost in our backyard and we don’t even know it.

As more sky observation observatories come online, such as the Rubin Observatory, we will likely catch microlensing events and discover where these stellar remnants actually remain. are. Then we will finally be able to see the underworld of the galaxy surrounding us.


Contact us: [email protected]

Our Standards, Terms of Use: Standard Terms And Conditions.